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Hybrid Couplers in Bilevel Microstrip
Mark D. Prouty, Student Member, IEEE, and S. E. Schwarz, Fellow, IEEE

Abstract— Hybrid couplers can be built using a bilevel mi-
crostrip structure in which two strips are positioned broad-
side, one above the other. This simple geometry provides large
coupling factors without the need for rigorous manufacturing
tolerances. Remarkably, if the dielectric constant of one of the
layers can be freely chosen, ideal hybrid coupler performance is
achievable. Even when the choice of dielectric constant is con-
strained, good results can be obtained. A technique for achieving
optimal design has been developed, and design curves are shown.
Experiments confirm design predictions.

The reentrant coupler may be analyzed as an interconnection
of two bilevel couplers of the kind described here. This provides
a simpler analysis than methods used earlier, and in some cases
yields more accurate results.

1. INTRODU~ION

THERE has been recent interest in multilayer microstrip

geometries, where there are two or more layers of con-
ductors and dielectrics over a ground plane [1], [2]. Scrme
common structures of this type, such as high-speed digital
lines, have been analyzed [3], [4]. It is also interesting to study
the properties of components built using the new geometry
[5]-[8]. One such component is the hybrid coupler, a version

of which has been reported experimentally [9]. In this paper,
we study bilevel couplers numerically, report their properties,

and give design data fm couplers using different materials.
The geometry considered here is shown in Fig. 1. A princi-

pal advantage of this structure is the strong cwpling possible
between the conductors, without the tight lithographic toler-
ances necessary in the mm-e common interdigitated coupler
[10]. In other important properties, such as bandwidth, iso-
lation, matching, and phase accuracy, we will show that this
geometry has performance comparable to that of the more

commonly used structures. In fact, if the designer is able to
choose the exact value of dielectric constant for one of the

layers, ideal coupler performance (perfect matching, isolation,

and quadrature phase outputs, at all frequencies) is obtained.
We shall also consider in this paper cascaded sections of

bilevel couplers. We will show that the reentrant coupler
[11] –[13] may be analyzed as an interconnection of two
bilevel couplers. Viewing this device as a cascade of elements,
rather than as a single element, eases the computation and
provides a more realistic analysis in certain cases.

A cmpler with the geometry considered here is one of
a class of nonsymmetric couplers. Many papers have been
written considering properties of such devices [14] – [16].
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Fig. 1. The geometry of the bilevel coupler. Ports 1 and 4 are the isolated
inputs, port 3 is the direct output for port 4, and port 2 is the direct output
for port 1.

Usually, each line in a nonsymmetric coupler has a different
impedance, and much of the literature centers around deter-
mining what impedance should be used to terminate each port
[17], [18]. This difference in impedance might be considered
an advantage, in order to effect an impedance transformation,
but more often it will be disadvantageous, requiring another
impedance matching element to convert back to the desired

impedance [19]. The approach taken here, however, is to find
the width of each line required to match all four ports to the

same characteristic impedance.

II. METHOD OF ANALYSIS

The method used in this work follows the procedure outlined
in [20]. It assumes quasi-TEM mode propagation, and lossless
conductors and dielectrics. The telegraphist’s equations de-
scribe the relationship between the current and voltage on the

two coupled lines in terms of the mutual and self-capacitances
and inductances of the lines. The eigenvectors of this system

are the normal modes of propagation, corresponding to the

even and odd modes for symmetric lines, while the eigenvalues
are the propagation constants for each mode. The voltage and
current along each line may be written as linear combinations
of the normal modes. Some linear algebra then yields the
4-port impedance matrix Z of the coupler. Fairly simple
closed-form expressions are given in [20] for the elements of
Z. From them, the S-parameters may be readily determined.

The next step in the analysis is to find the capacitance
and inductance matrices for the two conductors. These are
found by twice solving for the 2-D electrostatic field. The
capacitances are found from the charge on the conductors in
the presence of dielectrics, while the inductances are found
from the charges when the problem is solved with all dielectric
constants equal to the free-space value. In order to solve for
the static charges, we use the spectral domain method [21]. A
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very similar geometry is considered in [22]. A straightforward
generalization of that derivation yields the spectral Green’s
function necessary in our case.

III. SINGLE-STAGE COUPLERS

Using the above analysis procedure, we turn our attention to
the design of hybrid couplers. Fig. 1 shows the port definitions
used in this paper. Ports 1 and 4 are the isolated input ports,
port 2 is port 1‘s direct output, and port 3 is port 4’s direct
output. Naturally, the structure is symmetrical with respect to
swapping ports 1 with 2 and 3 with 4. In this paper, we are
interested in designing couplers which are well-matched to

500 lines at each port. This necessitates finding the optimal

widths, W1 and W2, for the bottom and top conductors,
respectively.

We use the following procedure to find the dimensions for
desired coupling. First, the substrate and cover-layer dielectric
constants are chosen as, presumably, these will be determined
by the process the designer has available. Next, the separation
S is set to some convenient value. This distance is treated
as the independent variable in the design procedure. That
is, once S is specified, the conductor widths required for
best impedance match at all ports are found. The coupling
coefficient is determined by these widths. Finally, the desired
coupling coefficient may be obtained by adjusting S.

The conductor widths are found in the following manner.
We wish to minimize the reflection coefficient at each port.
Due to the symmetries in the problem, there are only two
independent reflections: S11 and S44. We need to find WI and
W2 which minimize both of these parameters. We are able to
do this because Sll is only a weak function of W2, and S44
is only a weak function of W1. Therefore, the minimization
problems are nearly independent, and may be solved by a

simple iterative procedure. First, W2 is chosen arbitrarily, and
then S1l is minimized as a function of W1. Then, WI is

held constant, while S44 is minimized as a function of W2.

Fixing W2 now, and minimizing Sll again, is usually enough
iterations. This is not a mathematically rigorous procedure, to
be sure; it is not guaranteed to give Sll and S44 both near
their global minima. In practice, however, it does yield small
reflection coefficients at all ports.

The description has so far omitted one important point.
The S-parameters are functions of the electrical length of
the coupler, which is related to the speed of propagation of
the normal modes. If both modes had the same velocity, the

coupler would need to be a quarter-wavelength long [23].
However, when the velocities differ, due to the inhomogeneous
medium, no simple relation exists to find the optimal length.
We proceeded numerically, finding the length L for which the
coupling between the lines is (locally) maximized. We then
define an effective dielectric constant for the coupler accord-
ing to

L= c
4fo&

(1)

where f. is the center-band frequency.
Results of our calculations for several cover-layer dielec-

tric constants on a GaAs substrate are shown in Figs. 2–6.
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Fig. 2. Coupling magnitude at center frequency versus S/H for bilevel
couplers built on GaAs. The legend refers to the dielectric constant of the
cover-layer.
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Fig. 3. Optimum lower conductor width versus separation (both normalized
to H) for different cover-layer dielectrics.

The circuit designer may use these curves by first finding
the separation needed to achieve the desired coupling for
the material used. The graphs then show what matching is
obtainable with those materials, and what conductor widths
achieve this condition. The matching from the top port, S44,
and the isolation, S14, are very similar in magnitude to S11,
so only S1l is plotted.

In most of these graphs, the quantity plotted varies mono-
tonically with increasing CR of the cover-layer. The exception
is Fig. 5, where matching performance is plotted. Rather than
continuing to decrease, the return loss increases as the cover-
layer 6R is raised from 9.O to 12.(). There appears to be
a relationship between the dielectric constants of the layers
for optimal matching performance. It turns out that at a
certain vahre of cover-layer CR, a relationship exists between
the capacitance and inductance parameters. That is (with the
convention Cm > 0 adopted),

cm Lm— ._ .
mm

(2)
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Fig. 4. Optimum upper conductor width versus separation (both normalized
to H) for different cover-layer dielectrics.
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Fig. 5. Matching performance for couplers versus separation. S1 I at the
center frequency is plotted. S’M and SI 4 (isolation) are very nearly equal in
magnitude to S11
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Fig. 6. The solid lines show the effective dielectric constant for the coupler
for different cover-layer dielectrics. Using this value and equation (l), the
coupler length may be determined. The dashed line shows the best cover-layer

~R. At this value, ideal coupler performance is obtained.
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Let us now consider the frequency-dependent properties of
these couplers when built with commonly available materials.
In this case, performance is not ideal, but is comparable to
other single-stage coupler geometries. As an example, plots
are shown in Fig. 7 for the polyimide (ER = 3.3) on GRAS
system. The magnitude of the direct and coupled outputs is
similar to most 3-dB couplers, and the isolation and match-
ing are reasonable. Of particular interest is the plot of the
relative phases of the outputs. Note that from dc to beyond

the center frequency, the phase diverges linearly from the
desired quadrature response. This suggests that a length of
transmission line could be added for correction, as shown in
Fig. 8. The electrical length N of line may be calculated in
the following way. If we define Sci3 as the (i, j) component
of the corrected S-matrix, and Sij as the (i, j) component of
the original S-matrix, one desires

This relationship greatly simplifies the differential equations

governing the wave propagation. Using the methods outlined
in [24],1 it can, in fact, be shown algebraically that the
matching and isolation are perfect, and the output phases (after
adding a length of transmission line to one of the outputs) are
exactly 90° apart. Both characteristics hold at all frequencies.

The ideal cover-layer dielectric constant for different sepa-
rations is shown in Fig, 6. Interestingly, where the cover-layer
CR has its optimal value, we find that %ff = CR. This
is quite remarkable, considering the enormously convoluted
relationship between those parameters. No simple algebraic

explanation of this equality has been found. Furthermore,

(2) does not imply that the two mode velocities are equal.
This differs from the case of symmetric couplers, where ideal
coupling is obtained only when the even and odd mode
velocities are equal [23]. In our case, such performance is
obtained even when the normal modes have unequal velocity.

1Note that there is a sign error in [24, eqUiIdOIM(14) and (15)].use

equations (9) and (10) instead.

‘“=’(2)’’(2)-N
and

9“=’(2)=L(2)+N

(3)

(4)

The first relation implies N = L(~) – 90, while the second

requires N = 90 – L(&). These may both be satisfied if

‘(%)+’(3=180 (5)

In fact, this is a property of lossless, reciprocal 4-ports that are

matched at all ports [19]. Thus, the same length of transmission
line will correct the phases of the outputs for inputs to either
the top or the bottom of the coupler. Fig. 7 also shows the
difference in phases of the outputs after the transmission line
has been added. The difference is within a few degrees of the
desired quadrature relationship until, at higher frequencies, the
network becomes poorly matched, and the above conditions no
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Fig. 7. Simulated and measured performance of a 3-dB coupler, with a
cover-layer CR of 3.3 and substrate 6R of 12.9, using W l/H = 0.27,
W2/H = 0.59, S/H = 0.10, L = 10.55 cm, H = 0.635 cm. The points
are the measured performance; lines are predicted. The “corrected” curve is
the phase difference of the outputs after a correcting length of transmission
line has been added, as shown in Fig. 8
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Fig. 8. Network diagram showing how to correct for phase ercor. The length
of the transmission line N may be found in Fig. 9.
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Fig. 9. Length of transmissionline needed to correct for phase error as
shownin Fig. 8.

longer hold. Fig. 9 shows design curves indicating the length
of line necessary to correct the output phases.

(a)

(b)

Fig. 10. Comparison of the geometries of the reentrant coupler (a) and the
interconnected bilevel coupler (b). The top conductor is electrically isolated.
The two lower conductors are the coupled lines.

Also shown in Fig. 7 are experimental data for a coupler
built in the lab. Fairly low-frequency measurements were
used to reduce the effects of the clumsy coax-microstrip
connections. Reasonably good agreement is obtained.

IV. REENTRANT COUPLERS

The reentrant coupler is a device for increasing the coupling
between two conductors by using a third, floating conductor

[25]. It has been adapted to stripline [11] and other planar
configurations [12], [13]. The geometry of a planar reentrant
coupler is shown in Fig. 10(a).

One way to analyze such a structure is to consider it as a
single device, and analyze its entire cross section statically.
In this method, which we shall call the reentrant method, the
3 x 3 capacitance and inductance matrices are calculated, then
reduced to equivalent 2 x 2 matrices for the conductors of
interest, using the assumption that the total current on the top
conductor is zero [13]. However, analyzing a three-conductor

problem is more complicated than analyzing a two-conductor

problem, especially when using moment methods, since basis
functions must be appropriately chosen for the third conductor.

Applying the analysis for the bilevel coupler to the reentrant

case is accurate and has some advantages. Fig, 10(b) shows the

physical geometry of two interconnected bilevel couplers, and

Fig. 11 shows the connections schematically. It might seem

that the division of the top conductor would give rise to a

different current distribution and, thus, different performance.

This is not the case in the quasi-TEM limit, however, since

only longitudinal currents are assumed to exist. Since a simple

network analysis is applied to find the overall response, we

shall call this method the network method.

Results for simulations using the two different methods,

shown in Figs. 12 and 13, reveal the differences in the

analyses. In the network point of view, the two couplers do
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Fig. 11. Network diagram’ showing the connection of two single-stage
couplers into the reentrant type of coupler. Ports 3 and 4 of each coupler
form the isolated top conductor.
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Fig. 12. Comparison of results using the reentrant type of calculation
(points), and the cascaded network analysis (solid lines). CR = 2.1
(both substrate and cover-layer), S/H = 13/200, W1/H = 120/200,
W3/H = 332/200, D = 68/200.

not interact directly. Thus, this analysis will be closer to the
reentrant analysis when the distance between the coupled lines
is larger. This is seen by comparing the two figures.

There are some advantages to the network analysis, in

addition to its computational simplicity. The network point
of view allows for a delay to be simulated in the connection
between the two couplers. This delay is assumed to be zero in

the reentrant analysis. Thus, if the two coupled lines were
widely spaced, the network analysis would lead to more
accurate results. Furthermore, the network analysis predicts
resonances in the top conductor, which are not predicted in the
reentrant method of analysis. The reentrant method assumes
the total current in the top conductor is zero at every transverse
plane, and is thus oblivious to special behavior that arises when
the coupler takes on a resonant length. For the case we have
plotted, the resonant frequency is above the band of interest

but, of course, this may not always be the case.

V. CONCLUSION

With development of-multilevel circuits, couplers of the
sort we have described, as well as other bi- and multilevel
devices, can be expected to be of increasing practical interest.
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Fig. 13. Same as Fig. 12, except D = 668/200,

In this paper, we have supplied design data for bilevel couplers
on GaAs. We have seen how having an additional dielectric
constant available as a design parameter allows better opti-
mization, even to the point of ideal performance. The couplers
may be used either individually or in the convenient dual
(reentrant) form.
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